Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries

نویسندگان

  • Michael Elad
  • Michal Aharon
چکیده

We address the image denoising problem, where zero-mean white and homogeneous Gaussian additive noise is to be removed from a given image. The approach taken is based on sparse and redundant representations over trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm. This leads to a state-of-the-art denoising performance, equivalent and sometimes surpassing recently published leading alternative denoising methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Learned Representations for Image Restoration

Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The K-SVD has been recently proposed for thi...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Dictionary Learning for SAR Images Despeckling: A Comparative Study

In recent years, dictionaries combined with sparse learning techniques became extremely popular in computer vision. The image denoising approaches can be categorized as spatial domain, transform domain, and dictionary learning based according to the image representation. Using machine learning, sparse representations have become a trend and are used image and vision applications. The general id...

متن کامل

Journal of Emerging Trends in Computing and Information Sciences::Dictionary Learning for SAR Images Despeckling

In recent years, dictionaries combined with sparse learning techniques became extremely popular in computer vision. The image denoising approaches can be categorized as spatial domain, transform domain, and dictionary learning based according to the image representation. Using machine learning, sparse representations have become a trend and are used image and vision applications. The general id...

متن کامل

Simultaneous image fusion and denoising with adaptive sparse representation

In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modeling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006